長周期動揺低減システムに関する実証実験

川崎栄久*·石川健二**·根木貴史***·平石哲也****·米山治男*****·戀塚貴*****·朝倉邦友******

*(財)沿岸技術研究センター 調査部 研究員 ** 前(財)沿岸技術研究センター 調査部 研究員 *** 前(財)沿岸技術研究センター 研究主幹 **** (独)港湾空港技術研究所 海洋・水工部 部長 ***** (独)港湾空港技術研究所 海洋・水工部 上席研究官 ****** 国土交通省東北地方整備局 塩釜港湾・空港整備事務所 所長 ******** 国土交通省東北地方整備局 塩釜港湾・空港整備事務所 第一工務課

全国的に長周期波による係留船舶のサージングのために荷役障害が問題となっている.これを低減することを目的に開発された(独)港湾空港技術研究所の「長周期動揺低減システム」を含む2つの方式について、平成19年度に石巻港雲雀野地区において 実証実験と船体動揺シミュレーションによる検討を行なった。その結果、シミュレーションの精度においては課題が残ったが、実証実験においては長周期波高5cm未満の場合、通常の係留方式に対してかなりの低減効果が認められた. キーワード:長周期波、サージング、船体動揺シミュレーション、実証実験

1. はじめに

石巻港雲雀野地区は港湾整備の途上にあり,長周期波 により荷役稼働率が低い水準にある(図-1).長周期波対 策のために平成11年度からこれまでに多くの検討を重ね てきた.そして平成17年度に,(独)港湾空港技術研究 所により開発された「長周期動揺低減システム」を用い て実験対象船舶を対象とした,実験の事前準備として船 体動揺シミュレーションを行うことにより,係留システ ムの変更による長周期動揺低減効果を事前に検討した. 平成18年度には現地実証実験計画を策定した.本論文は, 平成19年度に石巻港雲雀野地区において,55,000DWT 級 の石炭運搬船の入港時に長周期動揺低減システムを適用 した際のデータの解析結果と長周期動揺低減システムの 効果について紹介する.

2. 長周期動揺低減システムの概要

長周期動揺低減システム(以下,低減システムと記す) は長周期波によって引き起こされる係留船舶のサージン グによる荷役稼働率低下を改善するために(独)港湾空 港技術研究所によって開発された^{1)~3)}.これは1本の係 留索を硬い係留索(例えば,テトロンダイニーマ)と軟 らかい係留索(例えば,ナイロン)で構成して,船上と 陸上のウインチの巻取りによって索の構成比を変えるこ とで係留船舶の固有周期も変化させて長周期波との共振 により生じる大きなサージングの発生を回避するもので ある.その概念図を図-2に記す.ここでは,船上のウイ ンチにはナイロン索が収納されて,陸上のウインチには テトロンダイニーマ索が収納されているが,両者はシャ ックルによって接続されている(ダイニーマはナイロン よりもバネ定数が高い).

図-1 整備途上の石巻港雲雀野地区

図-2 長周期動揺低減システムの概念図

低減システムの実施手順は次の通りである.

- ① 波高計により計測されたデータから、長周期波の卓 越周期を算出する.
- ② 船体動揺制御装置(コンピュータ)によって長周期 波との共振を防ぐ最適な係留船舶の固有周期を算出 する.
- ③ 船舶を係留する索のバネ定数を陸上と船上のウイン チによって変更し、共振を防止する.

シミュレーションと実証実験運用方策

3.1 船体動揺シミュレーションの実施

(1) シミュレーションの背景

低減システムによる係留船舶のサージング量の減少を 定量的に掴むために雲雀野地区に入港が予定されている 石炭船(55,000DWT級)を対象に、係留索の構成比を陸上 索 100%として陸上と船上のウインチで制御した場合の 係留方法(ウインチ方式)及び索をテトロンダイニーマ 100%として構成比を変化させない場合の係留方法(ビッ ト方式)の2方法について船体動揺シミュレーションを 実施し、同システムの事前検証を行なった.

(2) シミュレーションの条件と計算モデル

シミュレーションに用いる長周期波高(荷役限界波高) は2種類 (case1, case2) 設定した. case1 は 10cm と設定 した.これは石巻港に襲来する長周期波で最も高い値で ある. case2 は5 cm と設定した. それらの周期は20~200s であり, 一様スペクトルをとした.

バース前面の長周期波を外力として船体動揺シミュレ ーションを行い、サージング量、係留索張力及び防舷材 反力を求めた.シミュレーションには下記の6自由度の 運動方程式(1)式を用いた.

$$\sum_{j=1}^{6} \{ M_{ij} + m_{ij}(\infty) \} \quad \ddot{x}_{j}(t) + \sum_{j=1}^{6} \int_{0}^{t} f_{ij}(t - \tau) \quad \dot{x}_{j}(t) \quad d\tau + \sum_{j=1}^{6} N_{eij} \quad (1)$$

$$+ \sum_{j=1}^{6} (C_{ij} + G_{ij}) x_{j}(t) = F_{i} \cdots (i = 1, 2, \dots, 6)$$

$$\subset \subset \subset,$$

$$L_{ij}(t) = \frac{2}{\pi} \int_{0}^{\infty} B_{ij}(\omega) \cos \omega t d\omega \quad (2)$$

$$m_{ij}(\infty) = A_{ij}(\omega) + \frac{1}{\omega} \int_{0}^{\infty} L_{ij}(t) \sin \omega t dt$$
(3)

: 船体の質量 M_{ii} $m_{ii}(\infty)$:不変付加質量 $X_j(t)$: 動揺量 : 積分変数 τ $L_{ij}(t)$: メモリー影響関数 : 船体の復原力係数 C_{ij} N_{eij} : 粘性減衰力 G_{ij} : 係留力係数 ω : 角周波数 : 外力和(波,風,潮流等) $F_i(t)$

$A_{ij}(\omega)$:	付加質量
$B_{ij}(\omega)$:	減衰係数
t	:	時刻
<i>i, j</i>	:	船体動揺6自由度の項

(3) シミュレーション結果

船体動揺シミュレーションによる計算結果を表-1に示 す. ここでは低減システムを実施しない通常の係留方式 を「通常方式」と記している(以下、「通常方式」と記す). ここで、表-1の計算値と係留限界値を比較してみる. ウ インチ方式(ケース 2-2)において,長周期波高が 10cm の場合、係留限界値(ウインチの有するブレーキ耐力) 以上の張力が発生した.シミュレーション結果からは、 ビット方式よりウインチ方式がサージング量を減少させ ることとなった. 以上より、低減システムによるサージ ングの減少は明らかである.以降,実証実験を行いその 結果と比べて低減システムの評価を行うこととした.

表-1 シミュレーション結果

ケースNo.	対象船舶	(cm)	低減方式の種別	サージ量 (m)	(kN)	(k N) 防舷材反力		
1-1			通常方式	1.21	156	206		
1-2	石炭船(55,	5	5	5	1 0 0 8 1 0 8 上索)	0.65	345	411
1-3			1 0 0 %) (陸上索	0.6	164	273		
2-1	0 0 D				通常方式	2.26	199	416
2-2	W T)	10	1 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.46	714 ×	754		
2-3			1 0 0 %) (陸上索)	1.87	250	551		
許容値			2.0m ⁴⁾	350kN 539kN	973kN			

※ 許容値を超えた数値を赤字で示した. なお,係留索の許容値におけ る 350 kN は船上ウインチのブレーキ耐力であり、539 kN は陸上ウ インチのブレーキ耐力である. ウインチ方式は前者をビット方式に は後者が係留限界となる.

3.2 実証実験運用方策

(1) 実証実験の計測項目

計測項目を以下に記す.本論文では,主に長周期波と サージングの関係に主眼を置いているため,その他の計 測項目は割愛する.

- ① 外力:波高,長周期波周期
- ② 船体動揺:サージング
- 係留索の張力
- (4) 防舷材の反力
- ⑤ 船体コンディション(満載,半載,空載)
- (2) 低減システムによる船体動揺低減の評価方法
- 長周期波(外力)の特性 実験時の長周期波をスペクトル解析により周期特 性を算出する.
- 係留方式ごとのサージング量の比較
 係留方式ごと(ウインチ方式,ビット方式)に波
 高とサージング量の関係をグラフ化して比較する.
- 部体動揺の固有周期

サージングのスペクトル解析により係留方式別に 係留系の固有周期を算出して比較する.

以上のことを考慮して、実証実験を行った.

4. 実証実験の実施と結果

実証実験は計5回行なったが、長周期波高が比較的高 い実験を対象に解析評価を行なった。

実証実験では各係留方式を変更しながら前項 3.2(1)の 5 種類の項目を計測した.実験時の長周期波高は最大で 5 cm 程度だった.

4.1 低減システムによる低減効果

係留方式別の長周期波高とサージング量(有義値)の 関係を図-3 に示す.

いずれの係留方式においても長周期波高が大きくなる と動揺量が大きくなることを示している. 十分なデータ 数があるウインチ方式・陸上索 100%とビット方式につい ては、近似線(線形近似)を記入した.

近似線の傾きは、表-2 に示すとおりである. この傾き から、ウインチ方式・陸上索 100%に対してビット方式の ほうが、船体動揺が生じにくい係留方式であると言える.

検討した近似線は線形近似としているが,波高5cm及び10cmの場合に予測されるサージング量を図-3より推測すると表-3のとおりとなる.

図-3 長周期波高とサージ動揺量の関係

表-2 係留方式別の近似線の傾き

係留方式	近似線の傾き
ウィンチ方式・陸上索100%	17.4
ビット方式	9.2

表3	シミュ	レーショ	ンによ	るサーシ	シンカ	*量の予測精度
10	~ ~ ~	~ ~	~ 1-0	ີ 🌙 🧹 🗸	~ ~ /	王 / J 1/3/1日/又

係留方式	設定波 高(cm)	① 実証実験か らの予測値 (cm)	② シミュレーション値 (cm)	予測精度 (②/①)× 100)
ウインチ方式・ 陸上索 100%	5cm	0.76 m	0. 65m	83%
ビット方式		0.44 m	0. 60m	136%
ウインチ方式・ 陸上索100%	10cm	1.63 m	1.46m	90%
ビット方式		0.90 m	1.87m	208%

この表より、実験からの予測値とシミュレーション値 の比較を行なうと、シミュレーションによる予測値はウ インチ方式において実測値の83%~90%となっていて危険 側の結果とはなっているが、ビット方式においては136% ~208%の割り増しとなり予測値は過大である.以上より、 シミュレーションにより係留船舶のサージングの傾向を 掴むことは現時点では難しいと考えられる.シミュレー ションの精度向上には、係留索の初期張力や船体コンデ ィション等を反映したシミュレーションを実施し、今後、 実験結果とシミュレーション結果の関連性を検討してい く必要がある.

スペクトル解析による船体動揺の卓越周期を表-4に示 す.長周期波の卓越周期は 50s 程度であり、サージング も約 50s の動揺周期であることが判る.係留方式別のサ ージング周期を比較すると、通常方式よりもウインチ方 式,そしてビット方式が若干低い傾向が見られる.

表-4 長周期波及び船体動揺の卓越周期

	固有周期(Sec)		長周期波の	サージング	サージング周期	
	満載	半載	空載	卓越周期(sec)	周期(sec)	/固有周期
通常方式	75.0			50.0	50.0	0.7
ウィンチ方式	47.0			45.5	55.5	1.2
ビット方式	37.0			53.4	46.3	1.3
通常方式		63.0		45.7	57.0	0.9
ウィンチ方式		40.0		53.7	53.7	1.3
ビット方式		31.0		55.8	45.4	1.5
通常方式			48.0	欠損	66.7	1.4
ウィンチ方式			30.0	55.6	51.1	1.7
ビット方式			24.0	66.3	42.9	1.8

また、この表において、サージングの動揺周期と係留 船舶の固有周期を見るため、固有周期に対しサージング の周期がどの程度ずれているか(共振の回避)を確認し たが、若干ではあるが共振を回避する傾向にある.

係留船舶の固有周期との相関関係については、今後の 実験データを蓄積してさらに検討を行う必要がある.

5. おわりに

図-3によれば、長周期波高が5cm未満では、ウインチ 方式とビット方式による係留船舶の長周期動揺低減効果 は検証できたが、長周期波高が10cm以上での効果は確認 できていない、今後は、更に高い長周期波高の下で実証 実験を行い、低減システムの評価を行なう必要がある.

参考文献

- 1) 米山治男・佐藤平和・白石悟 (2003):係留索による長周期 動揺低減システムの開発-模型実験および試設計-,港湾空 港技術研究所資料, No. 1056, pp. 1-29
- 米山治男・白石悟・佐藤平和(2004):係留船舶の長周期動 揺低減システムの水理模型実験による検証,海洋開発論文集, 第 20 巻, pp. 1299–1304
- 米山治男(2007):係留船舶の長周期動揺低減システムの開発,平成19年度港湾空港技術振興会講演会講演概要, pp. 17-26
- (財)沿岸技術研究センター (2004):港内長周期波影響評価マニュアル pp. 23-25