北九州港(新門司地区)航路の埋没現象に対する基礎検討

佐藤 昌宏*・八尋 明彦**・杉浦 幸彦***・成毛 辰徳****・河野 正文*****・平原 俊明*****

* (一財) 沿岸技術研究センター 調査部 主任研究員 **(一財) 沿岸技術研究センター 客員研究員 *** いであ株式会社 沿岸・海岸事業部 沿岸解析部 部長 **** いであ株式会社 沿岸・海岸事業部 沿岸解析部 主査研究員 ***** 国土交通省 九州地方整備局 港湾空港部 港湾物流企画室長 ****** 国土交通省 中国地方整備局 広島港湾・空港整備事務所 技術開発課長

北九州港(新門司地区) 航路の埋没現象は、マルチビームを用いた深浅測量や NOWPHAS 苅田を用いて算定した波のエネルギーフラックスより、主に高波浪時に生じ ている土砂輸送が要因と推定した.埋没予測シミュレーションでは、埋没パターンを 再現でき、また、埋没量についても高い相関性を示した.埋没量を低減するための方 策としては潜堤工法やトレンチ工法があり、その効果については埋没予測シミュレー ションを行い、その妥当性を検証していく必要がある.

キーワード:シルテーション, 航路埋没, 潜堤, トレンチ

1. はじめに

北九州港新門司地区の航路(-10m)は、現在水深-8.0m 航路幅300mで暫定供用中であり、輸送量の増大に対応 するために航路幅400mへの拡幅を実施中である.また, 航路の拡幅に加えて,船舶の大型化への対応として水 深-10mへの増深が計画されている.そのため、航路で はシルテーションによる埋没量の増加が懸念されるこ とより、埋没対策の推進が求められている.

本検討は、深浅測量結果等を用いて、航路埋没の現 況整理を行う.また、埋没予測シミュレーションによ る埋没状況の再現性確認により、入力条件やパラメー タ等の調整を行い、年間の埋没量の算定を行う.また、 潜堤工法やトレンチ工法を用いた埋没対策の検討を行 うものである.

2. 航路埋没状況の現況把握

2.1 マルチビームによる深浅測量結果

新門司地区の航路で実施されたマルチビームによる 5回の測量を対象に,深浅測量結果を整理した.各測量 日の間隔をそれぞれ以下に示す. 期間(1): 58日(2014年8月8日~10月4日)

期間(2): 13日(2014年10月5日~10月17日)

期間(3):126日(2014年10月18日~2015年2月20日)

期間(4):209日(2015年2月21日~9月17日)

表-1 に期間と領域別の堆積土砂量の算定結果を示す. 図-1 に期間と断面毎(航路縦断の岸から沖側に向けての距離)の平均水深の変化量,図-2 に期間(1)~(4)の 測量結果の水深差を航路の平面図に示す.新門司地区航路は、岸側のX=0~4,000mにおいて堆積しており、特に期間(4)での堆積が顕著となった.その一方、沖側のX=4,000~10,000mの水深変化は小さいことを確認した. 各期間の中で期間(3)のみ侵食傾向がみられた.

表-1 期間と領域別の埋没量

	岸側 (0-4,000m)	沖側 (4,000m-10,000m)	合計
期間(1)	57,720	4,310	62,030
期間(2)	70,010	14,710	84,720
期間(3)	-47,040	-13,370	-60,410
期間(4)	200, 540	23, 500	224,040
全期間	281, 230	29,150	310, 380

図-2 測量結果の水深差(期間(1)~(4)の前後)

2.2 平常時と高波浪時に区分した埋没量の推定

平常時(潮汐)と高波浪時に区分した埋没量を推定 するにあたり,波のエネルギーフラックスに着目した. ここでは,NOWPHAS(全国港湾海洋波浪情報網)苅田にお ける波高,周期,波向から,波高1.0m以上の波のエネル ギーフラックスを算定した(式(1)).

$$F = 0.429 \rho H_{1/3}^2 T_{1/3} \left(1 + \frac{2kh}{\sinh 2kh} \right) \tanh \frac{2\pi h}{L} \quad \vec{x}(1)$$

ここで, ρ: 水の密度, H₁₃: 有義波高, T₁₃: 有義波周期, k: 波数, h: 水深, L: 波長

表-2 に期間と波高別のエネルギーフラックスを示す. 波高 1.0m以上の波のエネルギーは、期間(2) が 265.4 kWh/m,期間(4) が 274.9 kWh/m と大きく,期間 (3) が 7.1 kWh/m と小さい結果になった.平常時,すなわち 潮汐による埋没の目安となる日数は、期間 (3) が 126日,期間 (4) が 209日と長く、期間 (2) が 13 日と短い.そのため、期間(2)の埋没現象は、波によ る影響、期間(3)の浸食現象は、潮汐(平常時)による 影響と推定した.表-1の期間と領域別の堆積土砂量に ついて、前述のエネルギーフラックスを用いた区分を 踏まえると、波による影響が大きい期間(2)は 13日 と短期間であるが堆積土量が 84,720m³ (6,516 m³/ 日) と多く、潮汐 (平常時)による影響が大きい期間(3) は 126日と長期間であるが侵食土量 60,410m³ (479 m³/ 日) となった.

以上を整理すると,深浅測量結果と波のエネルギー フラックスの関係より,期間(1)の夏期(小規模台風を 含む)は埋没傾向,期間(2)の秋期(台風1419号来襲後) は短期間で顕著な埋没,期間(3)の冬期(低波浪期間) は侵食期間,期間(4)の冬期~夏期(台風1515を含む) は、長期間で顕著な埋没が見られたと言える.

2.3 砂面計による地盤高の連続観測結果

台風期を含めた水底土砂の挙動を把握することを目 的に、航路内の岸側 X=5,000m の位置に、砂面計を設置 し地盤高を計測した(2015 年 8 月 19 日~2016 年 2 月 22 日). 図-3 に、有義波高と地盤高変化の関係を示す. 計測期間中に発生した台風 1515 号の来襲(2015 年 8 月 25 日)により、有義波高は、砂面計による水圧の5分 間観測値から推定した結果、最大 H_{13} =3.0m となった. 地盤高は、最大有義波高の発生時刻から7時間後に約 50cm 上昇し、その2 日後に約 15cm まで低下した.また、 夏季から冬季にかけて地盤高は緩やかに低下し、2 月に は約 11cm となった.以上より、台風期に大きく埋没し、 冬期にかけて緩やかな侵食が見られたと言える.

2.2 と 2.3 より,新門司地区航路では,主に高波浪時の埋没が卓越していることがわった.

2.4 埋没量換算のための指標設定

埋没量換算には、波のエネルギーフラックスに着目した. 埋没量を換算するにあたり、表-1 に示した測量結果から求めた埋没量、表-2 に示したエネルギーフラックスについて、期間(2)と全期間の比を求めた(表-3). 台風来襲により短期間で顕著な埋没を示した期間(2)と 全期間の埋没量の比は3.66 であった.一方、波高0.7m 以上のエネルギーフラックスは、期間(2)と全期間の比 が3.51 と、埋没量の比と近い値を示した.

よって、埋没量換算のための指標は、波高 0.7m 以上の波のエネルギーフラックスとした.

3. 埋没予測シミュレーションによる 再現性確認と年間埋没量の算定

3.1 埋没予測シミュレーションによる再現確認

(1) 埋没予測シミュレーションの概要

埋没予測シミュレーションには、1993年に下関調査 設計事務所が開発した合成モデル(四建モデル+港研モ デル)を基本として、2014年に流動モデル等に最新の 知見を取り入れ改良を行った「平成26年度下関技調改 良モデル」を新門司航路に適用した¹⁾. 当モデルを用い て、適宜入力条件およびパラメータ調整を行い、航路 (-10m)とその周辺における埋没予測計算を行った.

表-2 期間と波高別のエネルギーフラックス

		波浪のエネルギーフラックス			
测骨阻隔	口 米ケ	(kWh/m)			
侧里间闸	日女人	A->ルゼー	波高0.7m	波高1.0m	
		主エネルター	以上	以上	
期間(1)	58日	267.8	130.3	62.8	
期間(2)	13日	344.0	299.6	265.4	
期間(3)	126日	484.3	82.6	7.1	
期間(4)	209日	1,095.8	540.1	279.4	
全期間	406日	2, 191.9	1,052.5	614.8	

表-3 埋没量とエネルギーフラックス(換算係数)

測量問阿	埋没量	波浪のエネルギーフラックス (kWh/m)		
侧里间愶	(m^3)	全エネルギー	波高0.7m 以上	波高1.0m 以上
期間(2)	84,720	344.0	299.6	265.4
全期間	310, 380	2, 191. 9	1,052.5	614.8
全期間÷期間(2)	3.66	6.37	3.51	2.32

短期間の埋没量の再現として,期間(2)に発生した台 風 1419 号の来襲(2014 年 10 月 11 日~15 日)に伴う埋 没状況の再現計算を実施した.表-4 に調整を行った主 なモデルパラメータ,図-4に高波浪時の埋没計算結果, 図-5 に断面(岸沖方向)の水深変化量を示す.

基礎条件	水平格子	第一領域:900m格子、81×91格子 第二領域:300m格子、142×115格子 第三領域:100m格子、184×61格子 第四領域:33 3mk子 388×112&子
	鉛直格子	7層:3.1,3.0,2.0,2.0,2.0,2.0,100.0(m) (多層レベル)
	水深	海底地形デジタルデータM7014 対馬海峡 海底地形デジタルデータM7018 瀬戸内海西部 航路・泊地測量 (2014年10月4日/2015年2月20日)
	底質	全域で含泥率90%、含水比150%と設定(関 門海峡部については、含泥率5%)
流動モデル	海底摩擦	マニングの粗度係数:0.025
	水平粘性	一定值:100,000.0 cm ² /s
	鉛直粘性	0.05 $(KM(cm^2/s)=AVK U \delta)$
	海面摩擦	U10 > 14m/s
		3. $699 \times 10^{-6} \times (100.0 \times U10)^{0.6}$
		U10 < 14m/s
		1.2×10^{-3}
SSモデル	巻上係数M	0.01000 kg/m ² /min
	卷上限界	0.75 dyn/cm ²
	せん断応力	
	参上乗数n	1.0
	沉降速度係数	A= 6.0×10 'm'/kg/sec
		B = 1.0
	水亚扩散	- 完值
		$100,000,0cm^2/s$
	鉛直拡散	一定值
		$1.0 \text{ cm}^2/\text{s}$
	最下層の沈降濃 度βmax	10
高濃度浮泥 モデル	高濃度浮泥層の 濃度	75,000 mg/L
	ビンガム降伏値	1.0 dyn/cm^2
	内部摩擦	0.0013
	浮泥底面摩擦	0.0026
	沈降限界せん断	$0.7 \mathrm{dyn/cm^2}$
	応力	o. r dyn/om
	沈降速度	0.2 cm/s

表-4 キなモデルパラメータ

図-4 高波浪時の埋没計算結果 10.0 深浅測量成果(期間(2)) 埋没計算結果(台風1419号) 8.0 6.0 水深変化量(cm) 4.0 2.0 0.0 -2.0 1000 2000 3000 4000 5000 6000 7000 8000 1000 -2000 -3000 -4000 -5000 -6000 -7000 -8000 -9000 -10000 測線(m) 図-5 側線(岸沖方向)毎の埋没量計算結果

期間(2)における測量結果の埋没パターンと,埋没計 算結果の埋没パターンはよく一致しており,平面および 断面方向で埋没パターンを再現することができた.

また,埋没土砂量は,期間(2)の測量結果が表-1 に示 すとおり,岸側が 70,010 m³,沖側が 14,710 m³,合計 84,720 m³に対して,埋没計算結果は岸側が 76,937 m³, 沖側が 13,664 m³,合計 90,610 m³となった.埋没量に ついても,高い相関性を示した.

(3) 平常時における埋没の再現性確認

前述の高波浪時における埋没の再現性確認で調整し たパラメータを用いて、平常時の埋没計算を実施した. 年間の堆積土砂量は、岸側が4,838 m³、沖側が67 m³、 合計4,905 m³となり、平常時の土砂移動は埋没に寄与 していない結果になった.ただし、期間(3)の測量結果 が表-1 に示すとおり、岸側が-47,040 m³、沖側が -13,370 m³、合計-60,410 m³であることより、平常時 の浸食現象について検証する必要がある.

3.2 年間埋没量の算定

表-1 に示した期間(2)の埋没量から,波高0.7 m以上 の波のエネルギーフラックスを指標として,その換算係 数を2.29 とし,年間埋没量を算定した.表-5 に,期間 (2)と平年(2007~2012年)のエネルギーフラックスか ら推定した年間の埋没量を示す.一定期間の深浅測量結 果から推定した年間埋没量は19.4 万m³/年となった.

なお, 全期間(期間(1)~(4))の約13か月の埋没量は 約31万m³(実測値:表-3)であり, 平年(推定値:表-5, 表-6)と比較して埋没量が多くなっている. これは,全 期間(期間(1)~(4))の約13か月が, 高波浪が多い期間 であったためだと考えられる.

また、同様の手法で図-4 に示した台風 1419 号による 埋没計算結果から、年間埋没量を算定した.表-6 に示 すシミュレーション結果から推定した年間埋没量は 20.7万m³/年となった.以上により、本手法で埋没予測 シミュレーション結果から将来の年間埋没量を推定す ることが可能となった.

表-5 埋没量と波浪のエネルギーフラックスの関係 から推定した年間埋没量

$\overline{\ }$	波高0.7m以上の	埋没土量(m ³)		/# ±
	フラックス (kWh/m)	測量値	推定値	加方
期間(2)	299.6	84, 720	-	
1年間あたり	686.9	-	194, 240	エネルギーフラックスは 2007~2012年の平均値
倍率	2.29	-	-	 1年間あたり推定値の 換算係物

表-6 シミュレーション結果から推定した

年間の埋没量

		岸側 (0-4,000m)	沖側 (4,000m-10,000m)	埋没量(m ³)
1111c	+算結果	176, 351	31, 320	207, 671

4. 埋没対策の検討

4.1 埋没対策工法

埋没対策工は、埋没実態と埋没メカニズム、対策工の 特性を踏まえて選定する必要がある.シルテーションに よる埋没対策には、潜堤工法、トレンチ工法、底泥流動 化工法、底質移動制御などが挙げられる¹⁾.

潜堤工法の特徴として、逆丁字型壁潜堤の場合、高濃 度浮泥の侵入防止効果と壁面に形成される渦による浮 泥の巻き上げ効果により、航路流入土砂量を低減する. 石積み式潜堤の場合、漁礁・藻場造成機能が期待できる. 航路外トレンチは、土砂流入経路の上手側にトレンチを 設けることで、航路内に侵入する前に、土砂を捕捉する. 航路内トレンチは、航路内の一部に周囲より深い水深の トレンチを設けることで、浮遊泥を捕捉する.図-6 に 潜堤およびトレンチのイメージ図を示す².

図-7 対策工法の設置位置イメージ

トレンチ工法は、ここでは、前述の埋没実態を踏まえ て、潜堤工法とトレンチ工法を選定した場合の例をイメ ージした.将来計画の航路幅 400m,航路水深-10m を基 本ケースとし、潜堤工法は、対策ケース1:航路北側潜 堤、対策ケース2:航路南側潜堤、対策ケース3:航路 両側潜堤とした.なお、潜堤の高さは1.5m とした.対 策ケース4:航路内両側トレンチ、対策ケース5:航路 外両側トレンチとした.なお、トレンチの幅は 33.3m、 深さは2m とした.設置位置は、それぞれ X=0~4,000m とした(図-7).

4.2 増深時の埋没予測シミュレーションの提案

新門司地区航路では、主に高波浪時の埋没が卓越して いることがわかったことより、将来の増深時の埋没予測 では、高波浪時、例えば台風1回あたりの擾乱を対象と した埋没計算を行い、さらに前述の換算係数を用いるこ とで、年間の埋没量推定が可能になる.ただし、台風の 選定によりその埋没量のシミュレーション結果は異な り、また、換算係数の値により年間の埋没量推定結果が 異なることになる.そのため、予測結果の精度向上をす るためには、定期的に深浅測量を行い、その評価を行っ ていくことが重要である.

5. まとめ

本検討では、新門司地区航路の埋没は、マルチビームによる深浅測量結果や砂面計による地盤高の連続観 測結果より、主に高波浪時に生じている土砂輸送が要因と推定した.埋没予測シミュレーションによる再現 性確認と年間埋没量の算定は、2014年8月~2015年9 月の測量成果を用いて実施しているが、この期間は、 非常に大きな台風が2回来襲している.そのため、深 浅測量を継続して行い、平年の埋没量を経年的に把握 し、シミュレーション精度を向上していく必要がある. また、埋没対策には、潜堤工法やトレンチ工法があり、 その効果については、埋没予測シミュレーションを行い、その妥当性を検証していくことが可能である.

謝辞

本稿は、北九州港湾空港整備事務所発注の「平成27 年度 北九州港(新門司地区)航路・泊地埋没対策検 討業務」の成果をまとめたものである.本業務の検討 にあたり、意見を頂いた国土技術政港湾空港技術研究 所沿岸環境領域長の中川 康之氏に感謝致します.

参考文献

- 1)国土交通省九州地方整備局下関港湾空港技術調査事務 所:平成27年度シルテーションによる埋没対策高度化検 討業務報告書,平成28年3月.
- 2) 平成28年度九州国土交通研究会プログラム:高濃度浮 泥の挙動特性を踏まえた新たな航路管理の有効性に関す る検討について、平成28年7月.