櫛形鋼矢板壁工法設計マニュアル(案)

本田 浩隆*・大村 厚夫**・服部 俊朗**・山﨑 浩之***・松尾 康成****・濱野 吉章*****

*(一財)沿岸技術研究センター 調査部 主任研究員

**(一財) 沿岸技術研究センター 調査役

***(一財) 沿岸技術研究センター 審議役

**** 前 国土交通省 九州地方整備局 下関港湾空港技術調查事務所 先任建設管理官 ***** 前 国土交通省 九州地方整備局 下関港湾空港技術調査事務所 設計室 建設管理官

巨大地震・津波のリスクに備えるため、高い耐震性能と耐津波性能を有する海岸保 全施設整備は、従来工法を組み合わせることで実施されているのが現状であり、延長 の長い施設整備に対して,経済性,景観性,親和性,工期短縮が強く求められている. 九州地方整備局管内の大分港海岸護岸において設計・施工が進められている櫛形鋼矢 板壁工法は、液状化による護岸変形を許容した護岸の構築工法であり、コスト縮減と 工期短縮を実現するため開発された.新設・既設にかかわらず従来工法と比較可能な 選択肢とするべく,設計マニュアルの整備が行われた. キーワード: 櫛形鋼矢板壁工法, 津波対策, 高潮対策

1. はじめに

日本は海に囲まれていることから、諸外国との貿易 や交流のため海岸沿いに多くの重要な産業施設や港湾 が立地しており、沿岸部には多くの家屋やライフライ ンが集中している.沿岸域に大きな被害を与え得る自 然災害として、地震による津波や、台風等による高潮 が挙げられる.

我が国は世界有数の地震多発国であり、たびたび大 地震に見舞われ大きな被害を受けている. なかでも, 海域のプレート境界を震源域とする大規模な津波を伴 う大地震は、数十年~数百年の間隔で発生し、甚大な 人的・物的被害をもたらしている.

一方,高潮に関しては、1959年の伊勢湾台風による 高潮災害を契機として, 恒久的な高潮対策が実施され てきたが、近年になって再び高潮災害が頻発するよう になってきた. 高潮対策事業が実施されてから約半世 紀が経ち、防潮堤の老朽化や天端沈下に対する高潮防 御機能の低下が問題になってきている。また、地球温 暖化の影響で海面上昇や台風の大型化、高潮潮位偏差 の増大が顕在化し、防潮堤の防災機能を低下させる事 態も起きている.

このような背景から、高度に利用された沿岸部にお いて、狭隘部での施工や近接施工が可能で、比較的安 価かつ迅速に海岸保全施設を構築する工法が求められ ている.

櫛形鋼矢板壁工法は、このような要求に応えるべく 内閣府の SIP(戦略イノベーション創造プログラム)に おけるレジリエントな防災・減災機能の強化の中で開 発が行われ、大分港海岸直轄海岸保全施設整備事業に 採用され、現在整備が進められている. 設計・施工に 際しては、大分港海岸護岸改良技術研究会等において 慎重に検討が行われ、その成果として令和3年3月に 櫛形鋼矢板壁工法設計マニュアル (案) が作成された.

2. 櫛形鋼矢板壁工法について

櫛形鋼矢板壁工法では、矢板壁の大部分の根入れ深 度を液状化層より上部又は液状化層の途中までの高さ にとどめ、液状化層の流動力を逃がす一方、矢板壁の 自重を支持するために最低限必要な数の矢板のみ液状 化層下の支持層(非液状化層)まで打ち込むことで矢 板壁天端の大きな沈下を防ぐことが基本的な考え方と なっている. 櫛形鋼矢板壁の概要を図-1 に示す. 特徴 として以下が挙げられる.

①液状化対策をしなくても地震後の津波や高潮・高 波等からの防護のために必要な機能を確保可能である.

②非液状化層まで長尺矢板を根入れし、鉛直方向の 変位を抑制するとともに、鋼構造物として大変形が生 じた場合でも容易に倒壊しない粘り強さを付加する.

③櫛形とすることにより、鋼材重量や鋼材打設長が 縮減し、コスト縮減や工期短縮につながる.

④鋼矢板の施工に自走式の圧入工法を用いれば、狭 隘地において省スペースかつ低騒音・低振動の施工が 可能である.

⑤護岸改良においては、既設の水叩きや排水溝をそ のまま流用することも可能である.

図-1 櫛形鋼矢板壁の概要

櫛形鋼矢板壁の各部の名称を図-2 に示す. 短尺矢板 部(壁体部)は,高潮・高波や津波による波力の作用に 対する構造的な安定性及びボイリングやパイピングな どの浸透破壊に対する安定性を確保するように諸元を 決定する.長尺矢板には,矢板単体で上部工を含む櫛 形鋼矢板壁の自重を支持する機能を確保する.

櫛形鋼矢板壁工法において標準的に用いられるハッ ト型鋼矢板の部分名称を図-3に示す.ここでは、ウェ ブ側に引張応力が、アーム側に圧縮応力が発生する曲

図-2 櫛形鋼矢板壁の各部の名称

図-3 ハット形鋼矢板の部分名称

げ変形を負曲げ状態と呼び,アーム側に引張応力が, ウェブ側に圧縮応力が発生する曲げ変形を正曲げ状態 と呼ぶ.

都形鋼矢板壁の地震応答解析

櫛形鋼矢板壁工法は、地震時における地盤の液状化 を許容することや、自立式の構造であることから、地 震による水平変形量が大きくなる傾向にある.また、 長尺矢板は単位奥行き当たりの剛性・強度が低いこと から、これらを考慮した適切な解析条件を設定する必 要がある.また、地震応答解析結果から、変形量が非 常に大きいと判断される場合には、鉛直方向の変形の 補正や付加モーメントに対する照査等が必要になると 考えられる.そこで、大分港海岸における設計に用い られた地震応答解析モデルを用いてパラメータスタデ ィを行った.

3.1 入力地震動

検討に用いた入力地震動を図-4 に示す. 南海トラフ の巨大地震 SPGA50%波とした. 速度の PSI 値は 183.2cm/s^{1/2}と比較的大きい.

3.2 鋼矢板の曲げ変形特性モデルの検討

櫛形鋼矢板壁工法の長尺矢板部(単体部)については, 法線方向において短尺矢板数枚あたりに1枚の配置と なることから,単位奥行きあたりの曲げ剛性は短尺矢板 部(壁体部)よりも小さい.そのため,曲げ変形が発生し やすい状況にあり,降伏曲率や全塑性曲率を超えた矢板 の挙動を想定しておく必要がある.

ハット形鋼矢板の SP-50H 及び SP-45H (いずれも SYW430) に関して,図-5 に示すように長尺矢板部(単体 部)への使用を想定した片持ち梁方式の曲げ変形試験が 実施されており,曲率 Ø=0.3~0.4 (m⁻¹) 程度を適用限 界の目安とし,これ以下の曲率ではハット形鋼矢板は破 断しないと想定する.また,単体利用の場合,壁体とし て通常の利用を行う場合と比べて Mp が低下することが わかっており,低減率は,正曲げで 0.84 倍,負曲げで 0.76 倍である.

曲げ変形試験で得られた低減率には、試験モデルや載荷方法等の影響が反映されているため、別途理想的な条件を再現した FEM 解析結果を考慮して図-6 に示す地震応答解析モデルとしての M- Ø特性を設定し、解析結果

<u>赤線</u>:単体使用を考慮して,壁体利用の*M*に対して正 曲げで0.99倍,負曲げで0.76倍を適用したケース <u>青線</u>:単体利用を考慮して,正曲げ・負曲げともに低減 率0.76倍を適用した安全側のケース

<u>黄線</u>:単体使用を考慮して,壁体利用かつ試験結果を鋼 材強度を用いて算定した Mpに対して正曲げで 0.99 倍, 負曲げで 0.76 倍を適用したケース

地震応答解析結果の残留変形図を図-7 に示す.図-6 の赤線の M- ø関係を用いている.砂質土層の液状化を 許容する設計のため,短尺矢板部と長尺矢板部の境界や 粘性土層との境界で長尺矢板が大きく変形しているこ とがわかる.曲率分布を図-8 に示す.最大曲率は約0.3 となっており,非常に大きな値となっているが,図-5 で示すグラフから判断すると,破断には至っていないと 考えられる.また,鋼矢板の M- øモデルによらずほぼ 同程度の最大曲率となっている.その理由としては,地 震動が大きく地盤変形が支配的である場合には,矢板の 全体の変形量は M にほとんど依存しない可能性が考え られる.

4. 付加曲げモーメントに対する検討

地震時には液状化土圧によって櫛形鋼矢板壁構造が 海側に押され、図-7に示すように上部工部分が長尺

図-7 残留変形図

矢板の支持層根入れ部分より前面に出てくると考えら れる.その際,液状化層と非液状化層(支持層)の境 界付近で長尺矢板に大きな曲率が発生している部分に は、上部工自重による付加モーメントが作用すること になる.付加モーメントは、一般的に用いられている 微小変形理論に基づく有限要素法(FLIP-ROSE 等)では 考慮されないため、他の方法によって付加モーメント を考慮した場合の長尺矢板単体部の安定性を検討する 必要がある.

これに対する検討として、以下の3手法を検討した.

解析終了後の安定性の確認

図-9 に示すように、地震応答解析終了時の上部工の 残留水平変位と上部工自重から付加モーメントを算定 し、非液状化層の抵抗土圧などによって、櫛型鋼矢板 壁が安定しているかどうか確認する方法.

② 偶力の考慮による安定性の確認

微小変形理論に基づく解析 (FLIP-ROSE)の中で偶力 によって付加モーメントを考慮する方法

③ FLIP-TULIP による安定性の確認

付加モーメントを考慮できる有限変形理論に基づく 解析 (FLIP-TULIP) を用いた地震応答解析を行い、付 加モーメントによって櫛形鋼矢板壁が崩壊しないこと を確認する方法

ただし、いずれの方法も付加モーメントの検討方法 として確立されたものではないため、検討にあたって は学識者の意見を聞くなどして慎重に判断することが 求められる.

イメージ図

4.1 FLIP-TULIP による検討

ここでは、上記3 手法のうち、FLIP-TULIP を用いた 解析結果について示す. FLIP-TULIP は有限変形理論に 基づいた解析手法のため、地震に伴う構造物の変形に伴 う自重の影響を時々刻々考慮することが可能である.も しFLIP-TULIP による解析の結果、付加モーメントが土 圧等の抵抗モーメントを上回ると、地震終了後も短尺矢 板部の海側への変形が止まらず進行していく状況が解 析結果として現れる.

図-10 に FLIP-TULIP の解析結果を示す. 地震動の終 了後に、水平変位が残留値から進行していないことが確 かめられた.

図-10 FLIP-TULIP による地震応答時刻歴波形(上段: 入力地震動,下段:矢板壁天端の水平変位)

5. おわりに

大分港海岸における設計・施工と同時並行で技術研 究会による議論が行われ、その成果として、令和3年3 月に櫛形鋼矢板壁工法設計マニュアル(案)のとりま とめが行われた.本マニュアル(案)は、大分港海岸 における事業実施に伴う検討結果を参考に、他の地域 への展開を見据えた構成として編集しているが、全て を網羅したものとはなっていない可能性があると考え ている.今後も設計事例の充実や施工・維持管理に関 するマニュアルの整備などを行っていく予定である.

謝辞

本稿は、国土交通省九州地方整備局下関港湾空港技 術調査事務所発注の「令和2年度大分港海岸改良技術 資料作成検討業務¹⁾」の成果の一部をまとめたもので ある.業務実施にあたっては、「大分港海岸護岸改良技 術研究会(委員長:菅野高弘港湾空港技術研究所上 級専任研究員)」の委員の皆様及び関係各位から貴重な ご意見、ご指導を賜りました.記して厚くお礼申し上 げます.

参考文献

 国土交通省九州地方整備局下関港湾空港技術調査 事務所:令和2年度大分港海岸改良技術資料作成 検討業務,令和3年3月