新港湾基準による鋼板セル式耐震強化岸壁の試設計

大熊修*・北澤壮介**

* (財) 沿岸技術研究センター 調査部 主任研究員
 ** 前(財) 沿岸技術研究センター 理事

本研究は、改正された「港湾の施設の技術上の基準(以下、新基準)」に基づき鋼板セル式耐 震強化岸壁の試設計を行い設計上の留意事項について検討した.主な検討事項は要求性能,性 能照査,部分係数である¹⁾.

キーワード:要求性能,性能規定,性能照査,セル部分係数

1. はじめに

本研究は、平成19年4月に改正された「港湾の施設の 技術上の基準(以下、新基準)」に基づき鋼板セル式耐震 強化岸壁の試設計を行い、設計上の留意事項について検 討をしたものである.

2. 鋼板切式耐震強化岸壁の要求性能の設定

2.1 要求性能の設定

(1) 耐震性能の照査項目

耐震強化岸壁((特定)幹線貨物輸送対応)として,L1, L2 地震発生後の岸壁・荷役機械の安定性及び地震発生後 の施設の修復性に関する項目について検討した.

新基準によると、耐震強化岸壁((特定)幹線貨物対応) では、「L2 地震動に関する偶発状態に対して、構造的な安 定が保たれ、軽微な修復の範囲内で、短期間の内に船舶 の利用及び幹線貨物の荷役が行えることが求められる(= 修復性)」とされている.

本試設計では, L2 地震時の

- 荷役機械・機械基礎の健全性
- ② 船舶接岸性(=岸壁の許容変形量)
- 荷役機械・基礎の復旧性

の3項目について要求性能を設定した.

荷役機械・機械基礎の健全性

1995 年兵庫県南部地震による荷役機械の被災状況はレ ールスパンの開きによる損傷,脱輪による部品の損傷が 主であった.これらの調査の結果,水平相対変位量は下 に示す通りであれば損傷しないこととした.

クレーン脚部材の変形量(30cm~50cm)+免震装置による変形量(50~60cm)+免震装置の導入により脱輪防止可能とすることで、クレーンレールスパンの相対変位量は100cm程度とする.

なお、高低差相対変位量は以下の通りとした.

地震後の荷役再開について、クレーン軌道を常時の管 理限界に回復させることが前提であり、軽微な作業であ ること、これらの作業が施設の荷役機械にて対応可能で あることを前提とした.その調整可能範囲は40~80cmと する.

② 船舶接岸性(=岸壁許容変形量)

1995年兵庫県南部地震による港湾施設の被害状況と被 災後の復旧状況を調査した.岸壁水平変位量1.6m~5.0m でも暫定供用した例があり、このことから構造体が安定 性を確保しており、船舶が接岸可能な状態であれば早期 の復旧が可能と判断した.(なお、この設定は本試設計で 用いたものであり、新基準によるものではない.)

地震発生時における船舶の接岸を確保するには、法線 はみだし量<防舷材変形吸収量であることが必要である。 しかし、この変形量内に収めようとすると費用対効果の 面で過大となる可能性がある。そこで本試設計では、既 往の被災事例報告等を参考にし、船長の 1/2 の範囲で2 点以上接岸を確保することする。

③

荷役機械基礎の復旧性

クレーン基礎補修工事の事例を調査した結果,レール の敷き直しは概ね1週間程度で完了ことが判明した.こ のことから,施工時にレール溝及びベースプレートに設 計時の変形量を吸収できる余裕代を設けた構造とするこ とで,地震発生後1週間程度の軽微な修復で機能回復が 可能と考える(図-1).

図-1 荷役機械基礎の修復例

3. 試設計

3.1 照查手順

(1) 照査フロー

照査した手順を図-2に示す.

図-2 鋼板セル式岸壁の照査手順の例

3.2 設計条件及び標準断面

(1) 共通事項

試設計に用いた断面を図-3に示す.

- セル,アーク肉厚 17mm
- ・ 前面水深 -20m
- セル下端 -30m
- 天端高さ +4.00m
- 上載荷重 永続状態 20 kN/m²
 L1 変動状態 10 kN/m²

- RWL=1.33m LWL=1.00m
 - 内部摩擦角 φ 裏込石(40°) -土圧算出に使用 埋土(30°) - " 中詰砂(30°) -せん断変形の検討に使用 敷石(40°) -土圧算出に使用

バネ値
 鉛直方向 60000kN/m³(回転変形の検討に使用)
 水平方向 20000kN/m³(回転変形の検討に使用)

根入れ値のバネ値は付属書よりバネ値(kN/m³)=2000N により算出することとした.又N値についてはダナム式 を用いてN≒30とした.

なお,照査項目については,永続状態において中詰砂のせん断抵抗,壁体の滑動,基礎の支持力とした.

L1 地震動変動状態においては,壁体の滑動・基礎の支持力について照査を行った.

3.3 照査用震度

(1) 入力地震動の整理

L1, L2 地震動の加速度時刻歴波形を図-4,5 に示す.当該港の標準サイト増幅特性を用いて作成を行った.

図-3 試計算に用いた標準断面図

(2) 照査用震度の算出

レベル1 地震動に関する変動状態の安定性照査は、重 力式岸壁に準じて照査用震度khを用いた震度法によっ て行った.ここで、照査用震度とは地震動の周波数特性 と継続時間による残留変形量への影響を考慮した震度で ある.なお、軟弱地盤上にあるため、地盤改良等を行う ものとし、照査用震度の特性値を算定した.

① フィルター処理

補正係数 b は、背後地盤の固有周期 T_b、壁体下地盤の固有周期 T_w、から下式により算定する.

$$T_b = \sum (4 \cdot \text{H/V}_s) \tag{1}$$

$$Tu = \sum (4 \cdot \mathrm{H/V_s}) \tag{2}$$

ここで,
$$H$$
; 層厚(m), V_s ; せん断波速度(m/s)

$$b = 1.05 \frac{\text{H}}{\text{H}_{\text{R}}} - 0.88 \frac{\text{T}_{\text{b}}}{\text{T}_{bR}} + 0.96 \frac{\text{T}_{u}}{T_{uR}} - 0.23$$
(3)

ここで、H;壁高(m)、H_R;基準壁高(=15m)、T_b;背後 地盤の初期固有周期(s)、T_{bR};背後地盤の基準初期固 有周期(=0.8 s)、T_u;壁体下地盤の初期固有周期(s)、 T_{uR};壁体下地盤の基準初期固有周期(=0.4 s)

なお, bの値については, 壁高Hに応じて下式に示され る範囲の値を設定する.

0.04H + 0.08 ≤ b ≤ 0.04H + 0.04 (4) ただし, b ≥0.28

周波数特性を勘案したフィルターは以下のものを用いた.

② PGA c (継続時間考慮後の時刻歴最大値)

$$p = 0.36 \ln(s / a_p) - 0.29$$
 (6)
t⊂*t*⊂*t*, p ≤ 1.0

$$\alpha_c = p \cdot \alpha_f \tag{7}$$

③ 照查用震度 Kh

照査用震度 k_h は下式より算定する.

$$K_{h} = 1.78 \left(\frac{D_{a}}{D_{r}}\right)^{0.55} \frac{\alpha_{c}}{g} + 0.44$$
(8)

ここで、 k_h :照査用震度 D_a :岸壁天端における許容され る変形量(=10cm) D_r :基準変形量(=10cm) α_c :補正後の 加速度最大値(cm/s²) g:重力加速度(=980cm/s²)

④ 算出した照査用震度

表-1 照查用震度算出結果

昭杏用震度篁定結果 (支持層が深い場合)

設計水深	構造形式	原地盤	SCP改良地盤	CDN改良地盤
-20. m	重力式 (10cm)	0.24	0.19	0.17

b値の計算

≈⊫гнл								
地 盤 水深(i	★涩 (m)	固有周期(s)		i 開 開	b値			
	小休(町)	Tb	Tu	H (m)	算定値	下限值	上限值	決定値
No. 9	-20	1.639	0.675	24.1	1.274	1.044	1.404	1.274

照査用震度の計算

111-1110 1117 1221	10.71							
₩般	★涇 (m)	$\alpha_{\rm f}$	h 値	α _f	S	低減率	α _c	k.
吧 益 小(/лик \ш/	(cm/s^2)	UL	(cm/s^2)	(cm/s^2)	р	(cm/s^2)	пh
No. 9	-20	122.0	1.274	122.16	3169.50	0.88	107.77	0.24

3.4 部分係数法による照査結果

(1) 安定計算結果

永続状態及びL1 地震動に関する変動状態について,部 分係数法により,施設の滑動,転倒,地盤の支持力に対 する安定性を照査した.なお,セルのせん断変形に対す る照査は構造解析係数を用いて算出した.結果の一覧を 下表に示す.

表-2 安定計算算出結果

		単位	耐力	作用	耐力作用比
	せん断抵抗	kN m/m	34322.52	23868.34	1.44>1.0
永続状態	滑動	kN/m	4667.59	17.55	265.96>1.0
	基礎の支持力	kN m/m	1031419	232509	4.44>1.2
レベル1地震動に関	滑動	kN/m	4842.34	617.52	7.84>1.0
する変動状態	基礎の支持力	kN m/m	554679	513581	1.08>1.0

4. L2 地震時の変形照査

4.1 セル構造のモデル化

L2 地震時における FLIP 解析をする上で検討した点を 以下に示す.

 FLIP における CDM 地盤のモデル化についての検討 CDM 改良体は、線形弾性体とし、

設計基準強度	q_{uck} =2000kN/m ²
ヤング係数	$E=100C=8\times10^{5}$ kN/m ²
ポアソン比	ν=0.33(原地盤と同じ)
壁式改良率	50% と設定した.

(2) 3次元のモデル化についての検討

鋼板の破断,局部座屈,ジョイントの損傷等の評価を 行うため,セル殻及びアークは板要素,継手はバネ要素, 中詰土はソリッド要素,前面捨石はバネ要素として3次 元モデルを構築し,FLIPで得られた地盤変位を静的にバ ネ先に作用する応答変位法を基本とした.この静的解析 で発生応力や損傷状態を把握した.

セルやアークは、曲げモーメントM、軸力N、せん断力 Sを分担する板要素とし、円周方向に 36~72 分割で節点 分割を行い、地盤に接している箇所は地盤バネを配置し た.

アーク部とセル本体との接合部

図-6 アーク部とセル本体との接合部モデル図

(3) 地震時のフープテンションに対する性能照査 セルの肉厚は永続時のフープテンションにより決定さ れており,地震時のフープテンションに対する照査はお こなっていない.しかし,地表面加速度が 500gal 程度 ならば発生応力は永続状態の 1.7 倍程度であり,鋼材の 降伏応力内であると想定した.

(4) セル根入れ前面 CDM の改良についての検討

セル殻前面(前踵)側の CDM 改良の必要性について, 改良の有無のケースで FLIP 解析を実施し, CDM 改良体の 応力分布について検討を行った.

その結果, CDM 改良の有無による影響は小さく, セル全体を CDM 改良体が支え,基盤層である土丹層に伝達していること,セル踵部の改良体が低応力状態にあることが判明した.

4.2 変形照査結果

(1)L2 地震動の作用に対する変形照査結果

FLIP 解析結果を以下に示す.

表-3 FLIP によるL2 地震後残留変形量

位置	Node, No	残留边位的		最权	图立(m)	最大加速度(m/s ²)		
		水形向	鉛直加	水形向	鉛直加	水环病	鉛直加	
洗	1470	-1.672	-0.707	-1.992	-0.718	-3, 105	-1.852	
湖	9493	-1.85	-1.371	-2, 125	-1.411	-3.008	-2,409	
岸壁底面	9521	-0.92	-0.513	-1.067	-0.519	-2,461	2,421	
岸壁天端	5563	-1.692	-0.516	-1.97	-0.524	-4.717	2,608	
包冲央	2926	-1.702	-0.12	-1.986	-0.12	5,381	0.435	
都继续	4486	-0.547	-0.295	-1.212	-0.462	-3.281	1.674	
海則レール	6597	-1.753	-0.184	-1.97	-0.184	-5.019	0.568	
陸則レール	9357	-1.243	0.029	-1.683	0.058	-6.189	0.182	
				残留	肇捔	1.834	e deg	

埋ちため変形が

参考文献

 (社)日本港湾協会)港湾の施設の技術上の基準・同解説 付 属書 平成19年9月

-42 -